organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

7-(4-Methoxyphenyl)-4,9-dimethyl-N-(4methylphenyl)-5,12-diazatetraphen-6amine

K. N. Vennila,^a K. Prabha,^b K. J. Rajendra Prasad^b and D. Velmurugan^a*

^aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and ^bDepartment of Chemistry, Bharathiar University, Coimbatore 641 046, India Correspondence e-mail: dvelmurugan@unom.ac.in

Received 3 January 2011; accepted 18 February 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.053; wR factor = 0.181; data-to-parameter ratio = 19.0.

In the title compound, $C_{32}H_{27}N_3O$, the fused tetracycilc ring system is essentially planar [r.m.s. deviation = 0.07 (7) Å]. An intramolecular N-H··· π (arene) interaction and a weak intramolecular C-H···N hydrogen bond may influence the molecular conformation. In the crystal, weak intermolecular C-H···N hydrogen bonds link the molecules into centrosymmetric dimers, forming $R_2^2(14)$ motifs. In addition, weak π - π stacking interactions with centroid-centroid distances in the range 3.578 (1)-3.739 (1) Å provide further stabilization.

Related literature

For the biological activity of naphthyridine derivatives, see: Gopalsamy *et al.* (2007); Kim *et al.* (2009); Nittoli *et al.* (2010); Bedard *et al.* (2000). For the structures of related naphthrydine derivatives, see: Peng *et al.* (2009); Seebacher *et al.* (2010); Vennila *et al.* (2010, 2011). For standard bond lengths, see: Allen *et al.* (1987). For hydrogen-bond motifs, see: Bernstein *et al.* (1995).

V = 2495.4 (3) Å³

Mo $K\alpha$ radiation

 $0.29 \times 0.24 \times 0.23 \text{ mm}$

24206 measured reflections

6239 independent reflections

3904 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 0.08 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int} = 0.029$

329 parameters

 $\Delta \rho_{\text{max}} = 0.27 \text{ e } \text{\AA}^-$

 $\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$

Z = 4

Experimental

Crystal data $C_{32}H_{27}N_3O$ $M_r = 469.57$ Monoclinic, $P2_1/c$ a = 8.3816 (6) Å b = 23.1651 (13) Å c = 12.8548 (7) Å $\beta = 91.171$ (3)°

Data collection

```
Bruker SMART APEXII area-
detector diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
T_{min} = 0.978, T_{max} = 0.983
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.181$ S = 0.956239 reflections

Table 1

Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C17–C22 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N3-H3···Cg	0.86	2.48	3.336 (3)	176
C28-H28···N1	0.93	2.37	2.927 (3)	118
$C18-H18\cdots N2^{i}$	0.93	2.55	3.435 (2)	159

Symmetry code: (i) -x + 1, -y + 1, -z.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009).

KNV thanks the CSIR, New Delhi, for financial assistance in the form of a Senior Research Fellowship. DV acknowledges the Department of Science and Technology (DST) for providing data-collection facilities under the TBI program and also thanks the DST for financial support under the UGC– SAP and DST–FIST programs. Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5193).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bedard, J., May, S., Heureux, L. L., Stamminger, T., Copsey, A., Drach, G., Huffman, J., Chan, L., Jin, H. & Rando, F. R. (2000). Antimicrob. Agents Chemother. 44, 929–937.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Gopalsamy, A., Shi, M., Boschelli, D. H., Williamson, R., Olland, A., Hu, Y., Krishnamurthy, G., Han, X., Arndt, K. & Guo, B. (2007). *J. Med. Chem.* 50, 5547–5549.
- Kim, K. H., Wissner, A., Floyd, B. M., Fraser, L. H., Wang, Y. D., Dushin, R. G., Hu, Y., Olland, A., Guo, B. & Arndt, K. (2009). *Bioorg. Med. Chem. Lett.* 19, 5225–5228.
- Nittoli, T., Dushin, R. G., Ingalls, C., Cheung, K., Floyd, M. B., Fraser, H., Olland, A., Hu, Y., Grosu, G., Han, X., Arndt, K., Guo, B. & Wissner, A. (2010). *Eur. J. Med. Chem.* 45, 1379–1386.
- Peng, J., Han, Z., Ma, N. & Tu, S. (2009). Acta Cryst. E65, o1109-o1110.
- Seebacher, W., Weis, R., Saf, R. & Belaj, F. (2010). Acta Cryst. E66, 01114.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Vennila, K. N., Prabha, K., Manoj, M., Prasad, K. J. R. & Velmurugan, D. (2010). Acta Cryst. E66, o2426-o2427.
- Vennila, K. N., Manoj, M., Prabha, K., Prasad, K. J. R. & Velmurugan, D. (2011). Acta Cryst. E67, o102–o103.

Acta Cryst. (2011). E67, o762-o763 [doi:10.1107/S1600536811006209]

7-(4-Methoxyphenyl)-4,9-dimethyl-N-(4-methylphenyl)-5,12-diazatetraphen-6-amine

K. N. Vennila, K. Prabha, K. J. R. Prasad and D. Velmurugan

Comment

Dibenzo-naphthyridine analogs have been reported to be good Phosphoinositide-Dependent Kinase (PDK-1) inhibitors. Gopalsamy *et al.* (2007) and Kim *et al.* (2009) have described the synthesis and structure activity relationship analysis of a novel series of benzo[c][2,7]naphthyridines as potent PDK-1 inhibitors. Recently a few X-ray crystal structures of PDK-1 and dibenzo[2,7] naphthyridine analog complexes have been reported (Gopalsamy *et al.*, 2007; Nittoli *et al.*, 2010). A series of dibenzo-naphthyridines were successfully tested for anticancer assays (Gopalsamy *et al.*, 2007; Nittoli *et al.*, 2010). The naphthyridine compounds were also proven to exhibit potent activity against human cytomegalovirus (Bedard *et al.*, 2000). As we are focussing on heterocyclic naphthyridine derivatives with potential biological properties, the crystal structure of the title compound was determined.

The molecular structure of the title compound is shown in Fig. 1. The bond lengths and angles are in the normal ranges (Allen *et al.*, 1987). The fused tetracyclic ring system is essentially planar in geometry as was previously reported for a related compounds (Vennila *et al.*, 2010, 2011; Seebacher *et al.* 2010; Peng *et al.* 2009). An intramolecular N—H··· π (arene) interaction and a weak intramolecular C—H···N hydrogen bond may influence the molecular conformation. In the crystal, weak intermolecular C—H···N hydrogen bonds link the molecules into centrosymmetric dimers forming R₂²(14) motifs (Bernstein *et al.*, 1995) (see Fig. 2). In addition, weak π - π stacking interactions with centroid to centroid distances in the range 3.578 (1) - 3.739 (1) Å provide additional stabilization.

Experimental

A mixture of 4',4"-dimethyl-2,4-bis-(*N*-phenylamino) quinoline (0.0010 mol) and *p*-methoxybenzoic acid (0.0011 mol) was added to polyphosphoric acid (3 g of P_2O_5 in 1.5 mL of H_3PO_4) and kept at 323-328K for 5 h. The reaction was monitored by TLC. After the completion of the reaction, the reaction mixture was poured into ice water and neutralised with saturated NaHCO₃ solution to remove the excess of *p*-methoxy benzoic acid. The precipitate was filtered, dried and purified by column chromatography over silica gel using petroleum ether : ethyl acetate (98 : 2). The product was recrystallised using ethyl acetate.

Refinement

The H-atoms were positioned geometrically and treated as riding atoms: C—H =0.93 Å H-aromatic, C—H = 0.96 Å Hmethyl, and N—H = 0.86 Å, with $U_{iso} = k \times U_{eq}$ (parent C or N-atom), where k = 1.5 for methyl H-atoms, and = 1.2 for all other H-atoms.

Figures

Fig. 1. The molecular structure of the title compound, showing thermal ellipsoids drawn at 50% probability level.

Fig. 2. The crystal packing of the title compound with hydrogen bonds shown as dashed lines.

7-(4-Methoxyphenyl)-4,9-dimethyl-N-(4-methylphenyl)-5,12- diazabenz[a]anthracen-6-amine

F(000) = 992

 $\theta = 1.8 - 28.5^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 293 KBlock, yellow

 $D_{\rm x} = 1.250 {\rm Mg m}^{-3}$

 $0.29 \times 0.24 \times 0.23 \text{ mm}$

Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 6327 reflections

Crystal data
C ₃₂ H ₂₇ N ₃ O
$M_r = 469.57$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
<i>a</i> = 8.3816 (6) Å
<i>b</i> = 23.1651 (13) Å
c = 12.8548 (7) Å
$\beta = 91.171 (3)^{\circ}$
$V = 2495.4 (3) \text{ Å}^3$
Z = 4

Ľ

Data collection	
Bruker SMART APEXII area-detector diffractometer	6239 independent reflections
Radiation source: fine-focus sealed tube	3904 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.029$
ω and ϕ scans	$\theta_{\text{max}} = 28.5^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2004)	$h = -11 \rightarrow 11$
$T_{\min} = 0.978, T_{\max} = 0.983$	$k = -29 \rightarrow 30$
24206 measured reflections	$l = -17 \rightarrow 16$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map

$R[F^2 > 2\sigma(F^2)] = 0.053$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.181$	H-atom parameters constrained
<i>S</i> = 0.95	$w = 1/[\sigma^2(F_o^2) + (0.0992P)^2 + 0.5542P]$ where $P = (F_o^2 + 2F_c^2)/3$
6239 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
329 parameters	$\Delta \rho_{max} = 0.27 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.23 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

F 1		1.	1 .	• ,				. 1.	1 .	,	182	ζ.
Fractional	atomic	coordinates	and i	sotron	IC OF P	auivalent	' isotron	1C d1S	nlacement	narameters	IA^{-}	1
1 / 00011011011	aronne	coordinates	control t	sonop		9000000000000	isonop	ie ans	pracement	parameters	1.1	/

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
C11	0.27001 (18)	0.47982 (7)	0.01559 (12)	0.0415 (4)
N2	0.38310 (17)	0.54757 (6)	0.14162 (11)	0.0481 (3)
С9	0.44758 (19)	0.50366 (7)	0.19420 (12)	0.0437 (4)
C8	0.43129 (19)	0.44464 (7)	0.16148 (12)	0.0419 (4)
C17	0.29497 (18)	0.37335 (7)	0.03664 (12)	0.0416 (4)
C6	0.6097 (2)	0.47172 (8)	0.34423 (13)	0.0506 (4)
C10	0.29963 (19)	0.53681 (7)	0.05320 (13)	0.0452 (4)
C12	0.33652 (18)	0.43309 (6)	0.07278 (12)	0.0411 (4)
C7	0.52499 (19)	0.40261 (7)	0.22420 (12)	0.0445 (4)
C14	0.11930 (19)	0.51950 (8)	-0.13214 (13)	0.0488 (4)
N1	0.60278 (17)	0.41521 (6)	0.30973 (11)	0.0509 (4)
C13	0.1761 (2)	0.47325 (7)	-0.07674 (13)	0.0471 (4)
H13	0.1524	0.4362	-0.1004	0.056*
C5	0.5387 (2)	0.51709 (7)	0.28813 (13)	0.0508 (4)
N3	0.53552 (18)	0.34709 (6)	0.18772 (12)	0.0527 (4)
H3	0.4677	0.3388	0.1389	0.063*
C22	0.1889 (2)	0.34023 (7)	0.09339 (13)	0.0467 (4)
H22	0.1425	0.3560	0.1520	0.056*
01	0.1768 (2)	0.20499 (5)	-0.04304 (11)	0.0739 (4)
C20	0.2205 (2)	0.26068 (7)	-0.02185 (14)	0.0523 (4)
C16	0.2387 (2)	0.58410 (7)	-0.00458 (15)	0.0534 (4)
H16	0.2565	0.6215	0.0194	0.064*
C19	0.3250 (2)	0.29293 (7)	-0.08088 (14)	0.0548 (5)
H19	0.3705	0.2770	-0.1397	0.066*

C18	0.3608 (2)	0.34901 (7)	-0.05119 (13)	0.0493 (4)
H18	0.4302	0.3707	-0.0909	0.059*
C15	0.1548 (2)	0.57559 (8)	-0.09457 (16)	0.0551 (5)
H15	0.1195	0.6074	-0.1326	0.066*
C23	0.6376 (2)	0.30140 (7)	0.21616 (14)	0.0517 (4)
C1	0.6987 (3)	0.48302 (9)	0.43698 (15)	0.0646 (5)
C21	0.1515 (2)	0.28481 (7)	0.06463 (14)	0.0529 (4)
H21	0.0798	0.2635	0.1033	0.063*
C33	0.0213 (2)	0.51229 (9)	-0.23006 (15)	0.0622 (5)
H33A	0.0461	0.4759	-0.2616	0.093*
H33B	0.0449	0.5430	-0.2774	0.093*
H33C	-0.0900	0.5133	-0.2139	0.093*
C4	0.5588 (3)	0.57407 (9)	0.32314 (16)	0.0680 (6)
H4	0.5125	0.6045	0.2861	0.082*
C26	0.8354 (2)	0.20560 (8)	0.25512 (18)	0.0661 (5)
C28	0.7225 (3)	0.29651 (9)	0.30897 (17)	0.0732 (6)
H28	0.7150	0.3250	0.3596	0.088*
C24	0.6517 (3)	0.25781 (8)	0.14459 (18)	0.0736 (6)
H24	0.5944	0.2600	0.0820	0.088*
C25	0.7489 (3)	0.21103 (9)	0.1638 (2)	0.0809 (7)
H25	0.7562	0.1823	0.1137	0.097*
C27	0.8194 (3)	0.24844 (10)	0.3259 (2)	0.0813 (7)
H27	0.8757	0.2456	0.3888	0.098*
C29	0.7759 (3)	0.43458 (11)	0.49655 (17)	0.0853 (7)
H29A	0.8283	0.4496	0.5579	0.128*
H29B	0.8529	0.4159	0.4537	0.128*
H29C	0.6961	0.4072	0.5162	0.128*
C2	0.7139 (3)	0.53922 (11)	0.46798 (18)	0.0831 (7)
H2	0.7713	0.5473	0.5289	0.100*
C30	0.9433 (3)	0.15394 (10)	0.2742 (2)	0.0919 (8)
H30A	1.0215	0.1521	0.2208	0.138*
H30B	0.8806	0.1193	0.2731	0.138*
H30C	0.9961	0.1578	0.3408	0.138*
C3	0.6470 (3)	0.58475 (11)	0.41220 (19)	0.0859 (7)
H3A	0.6619	0.6225	0.4351	0.103*
C32	0.2335 (5)	0.18004 (10)	-0.13340 (19)	0.1118 (11)
H32A	0.2088	0.2046	-0.1917	0.168*
H32B	0.1839	0.1431	-0.1439	0.168*
H32C	0.3470	0.1752	-0.1271	0.168*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	0.0348 (8)	0.0400 (8)	0.0498 (8)	-0.0001 (6)	0.0044 (7)	0.0023 (6)
N2	0.0441 (8)	0.0410 (7)	0.0595 (8)	-0.0014 (6)	0.0068 (7)	-0.0046 (6)
C9	0.0387 (8)	0.0436 (8)	0.0490 (9)	-0.0023 (7)	0.0078 (7)	-0.0036 (7)
C8	0.0372 (8)	0.0406 (8)	0.0480 (8)	-0.0009 (6)	0.0036 (7)	-0.0003 (6)
C17	0.0391 (8)	0.0385 (8)	0.0467 (8)	0.0003 (6)	-0.0060 (7)	0.0025 (6)

C6	0.0475 (10)	0.0572 (10)	0.0473 (9)	-0.0041 (8)	0.0044 (8)	-0.0061 (7)
C10	0.0363 (8)	0.0414 (8)	0.0582 (10)	-0.0002 (7)	0.0083 (7)	0.0000 (7)
C12	0.0359 (8)	0.0388 (8)	0.0488 (8)	0.0003 (6)	0.0045 (7)	0.0000 (6)
C7	0.0388 (8)	0.0462 (9)	0.0484 (9)	-0.0013 (7)	0.0007 (7)	0.0010 (7)
C14	0.0356 (8)	0.0539 (10)	0.0571 (10)	0.0041 (7)	0.0052 (7)	0.0107 (7)
N1	0.0479 (8)	0.0564 (9)	0.0483 (8)	-0.0009 (7)	-0.0005 (7)	-0.0016 (6)
C13	0.0409 (9)	0.0447 (9)	0.0557 (9)	0.0004 (7)	0.0028 (7)	0.0011 (7)
C5	0.0494 (10)	0.0535 (10)	0.0497 (9)	-0.0064 (8)	0.0061 (8)	-0.0097 (7)
N3	0.0519 (9)	0.0453 (8)	0.0603 (9)	0.0034 (6)	-0.0162 (7)	-0.0024 (6)
C22	0.0419 (9)	0.0458 (9)	0.0522 (9)	0.0014 (7)	-0.0011 (7)	0.0018 (7)
01	0.1046 (12)	0.0424 (7)	0.0739 (9)	-0.0111 (7)	-0.0147 (8)	-0.0056 (6)
C20	0.0616 (11)	0.0377 (8)	0.0567 (10)	-0.0031 (7)	-0.0163 (8)	0.0017 (7)
C16	0.0444 (9)	0.0409 (9)	0.0751 (12)	0.0041 (7)	0.0066 (9)	0.0035 (8)
C19	0.0659 (12)	0.0489 (10)	0.0494 (9)	0.0032 (8)	-0.0044 (8)	-0.0061 (7)
C18	0.0534 (10)	0.0451 (9)	0.0496 (9)	-0.0033 (7)	0.0024 (8)	0.0002 (7)
C15	0.0403 (9)	0.0505 (10)	0.0746 (12)	0.0077 (8)	0.0063 (9)	0.0160 (8)
C23	0.0469 (10)	0.0455 (9)	0.0623 (10)	0.0013 (7)	-0.0075 (8)	0.0051 (8)
C1	0.0648 (13)	0.0780 (14)	0.0509 (10)	-0.0048 (10)	-0.0003 (9)	-0.0100 (9)
C21	0.0513 (10)	0.0452 (9)	0.0621 (10)	-0.0072 (8)	-0.0033 (8)	0.0074 (8)
C33	0.0490 (11)	0.0744 (13)	0.0630 (12)	0.0031 (9)	-0.0017 (9)	0.0145 (9)
C4	0.0821 (15)	0.0560 (11)	0.0660 (12)	-0.0063 (10)	0.0021 (11)	-0.0150 (9)
C26	0.0553 (12)	0.0505 (11)	0.0919 (15)	0.0047 (9)	-0.0111 (11)	0.0118 (10)
C28	0.0827 (15)	0.0653 (13)	0.0705 (13)	0.0191 (11)	-0.0235 (11)	-0.0045 (10)
C24	0.0892 (16)	0.0523 (11)	0.0778 (13)	0.0153 (10)	-0.0311 (12)	-0.0069 (10)
C25	0.0951 (18)	0.0512 (12)	0.0953 (16)	0.0183 (11)	-0.0236 (14)	-0.0100 (11)
C27	0.0821 (16)	0.0747 (14)	0.0857 (15)	0.0190 (12)	-0.0317 (13)	0.0073 (12)
C29	0.0919 (18)	0.1044 (19)	0.0587 (12)	0.0039 (14)	-0.0180 (12)	-0.0034 (12)
C2	0.0952 (19)	0.0912 (18)	0.0624 (13)	-0.0107 (14)	-0.0125 (12)	-0.0218 (12)
C30	0.0839 (17)	0.0659 (14)	0.125 (2)	0.0222 (12)	-0.0138 (15)	0.0159 (13)
C3	0.109 (2)	0.0742 (15)	0.0737 (14)	-0.0156 (14)	-0.0092 (14)	-0.0303 (12)
C32	0.209 (4)	0.0567 (14)	0.0696 (14)	-0.0158 (17)	-0.0010 (18)	-0.0162 (11)

Geometric parameters (Å, °)

C11—C12	1.416 (2)	С19—Н19	0.9300
C11—C13	1.419 (2)	C18—H18	0.9300
C11—C10	1.426 (2)	С15—Н15	0.9300
N2—C9	1.330 (2)	C23—C24	1.373 (3)
N2—C10	1.346 (2)	C23—C28	1.381 (3)
С9—С8	1.436 (2)	C1—C2	1.367 (3)
C9—C5	1.449 (2)	C1—C29	1.498 (3)
C8—C12	1.402 (2)	C21—H21	0.9300
C8—C7	1.479 (2)	С33—Н33А	0.9600
C17—C18	1.386 (2)	С33—Н33В	0.9600
C17—C22	1.392 (2)	С33—Н33С	0.9600
C17—C12	1.498 (2)	C4—C3	1.372 (3)
C6—N1	1.383 (2)	C4—H4	0.9300
C6—C5	1.400 (3)	C26—C27	1.355 (3)
C6—C1	1.418 (3)	C26—C25	1.373 (3)

C10—C16	1.413 (2)	C26—C30	1.517 (3)
C7—N1	1.300 (2)	C28—C27	1.393 (3)
C7—N3	1.372 (2)	C28—H28	0.9300
C14—C13	1.367 (2)	C24—C25	1.375 (3)
C14—C15	1.416 (3)	C24—H24	0.9300
C14—C33	1.498 (3)	C25—H25	0.9300
С13—Н13	0.9300	С27—Н27	0.9300
C5—C4	1.403 (2)	С29—Н29А	0.9600
N3—C23	1.405 (2)	С29—Н29В	0.9600
N3—H3	0.8600	С29—Н29С	0.9600
C22—C21	1.371 (2)	C2—C3	1.387 (4)
С22—Н22	0.9300	С2—Н2	0.9300
O1—C20	1.367 (2)	C30—H30A	0.9600
O1—C32	1.390 (3)	С30—Н30В	0.9600
C20—C19	1.388 (3)	С30—Н30С	0.9600
C20—C21	1.381 (3)	С3—НЗА	0.9300
C16—C15	1.356 (3)	C32—H32A	0.9600
C16—H16	0.9300	С32—Н32В	0.9600
C19—C18	1.385 (2)	С32—Н32С	0.9600
C12—C11—C13	123.91 (14)	C24—C23—C28	117.96 (17)
C12—C11—C10	117.89 (15)	C24—C23—N3	116.10 (16)
C13—C11—C10	118.20 (14)	C28—C23—N3	125.94 (17)
C9—N2—C10	119.11 (14)	C2—C1—C6	117.7 (2)
N2—C9—C8	122.97 (15)	C2—C1—C29	121.8 (2)
N2—C9—C5	117.45 (15)	C6—C1—C29	120.41 (19)
C8—C9—C5	119.59 (15)	C22—C21—C20	119.92 (16)
C12—C8—C9	117.95 (15)	C22—C21—H21	120.0
C12—C8—C7	127.10 (14)	C20—C21—H21	120.0
C9—C8—C7	114.88 (14)	С14—С33—Н33А	109.5
C18—C17—C22	118.13 (15)	С14—С33—Н33В	109.5
C18—C17—C12	122.29 (14)	H33A—C33—H33B	109.5
C22—C17—C12	119.57 (14)	С14—С33—Н33С	109.5
N1—C6—C5	122.05 (16)	H33A—C33—H33C	109.5
N1C6C1	117.53 (17)	H33B—C33—H33C	109.5
C5—C6—C1	120.34 (17)	C3—C4—C5	119.7 (2)
N2—C10—C16	118.44 (15)	C3—C4—H4	120.1
N2-C10-C11	122.79 (15)	C5—C4—H4	120.1
C16—C10—C11	118.76 (16)	C27—C26—C25	116.68 (19)
C8—C12—C11	119.12 (14)	C27—C26—C30	122.4 (2)
C8—C12—C17	123.54 (14)	C25—C26—C30	120.9 (2)
C11—C12—C17	117.28 (14)	C23—C28—C27	119.3 (2)
N1—C7—N3	117.69 (15)	C23—C28—H28	120.4
N1—C7—C8	124.38 (15)	С27—С28—Н28	120.4
N3—C7—C8	117.88 (15)	C23—C24—C25	121.2 (2)
C13—C14—C15	118.26 (17)	C23—C24—H24	119.4
C13—C14—C33	121.96 (17)	C25—C24—H24	119.4
C15—C14—C33	119.78 (16)	C26—C25—C24	121.8 (2)
C7—N1—C6	120.05 (15)	С26—С25—Н25	119.1
C14—C13—C11	122.22 (16)	C24—C25—H25	119.1

C14—C13—H13	118.9	C26—C27—C28	123.1 (2)
C11—C13—H13	118.9	С26—С27—Н27	118.5
C6—C5—C4	119.60 (17)	С28—С27—Н27	118.5
C6—C5—C9	118.62 (15)	C1—C29—H29A	109.5
C4—C5—C9	121.78 (18)	С1—С29—Н29В	109.5
C7—N3—C23	131.31 (15)	H29A—C29—H29B	109.5
C7—N3—H3	114.3	С1—С29—Н29С	109.5
C23—N3—H3	114.3	H29A—C29—H29C	109.5
C21—C22—C17	121.33 (16)	H29B—C29—H29C	109.5
C21—C22—H22	119.3	C1—C2—C3	122.6 (2)
С17—С22—Н22	119.3	C1—C2—H2	118.7
C20—O1—C32	117.64 (18)	С3—С2—Н2	118.7
O1—C20—C19	124.64 (17)	С26—С30—Н30А	109.5
O1—C20—C21	115.29 (16)	С26—С30—Н30В	109.5
C19—C20—C21	120.07 (15)	H30A—C30—H30B	109.5
C15—C16—C10	120.74 (16)	С26—С30—Н30С	109.5
С15—С16—Н16	119.6	H30A—C30—H30C	109.5
С10—С16—Н16	119.6	H30B—C30—H30C	109.5
C20—C19—C18	119.30 (16)	C4—C3—C2	119.9 (2)
С20—С19—Н19	120.3	С4—С3—НЗА	120.0
С18—С19—Н19	120.3	С2—С3—НЗА	120.0
C17—C18—C19	121.22 (16)	O1—C32—H32A	109.5
C17—C18—H18	119.4	O1—C32—H32B	109.5
C19—C18—H18	119.4	Н32А—С32—Н32В	109.5
C16—C15—C14	121.74 (16)	O1—C32—H32C	109.5
С16—С15—Н15	119.1	H32A—C32—H32C	109.5
C14—C15—H15	119.1	H32B—C32—H32C	109.5
C10—N2—C9—C8	-0.6 (2)	C8—C9—C5—C4	179.71 (16)
C10—N2—C9—C5	179.02 (13)	N1—C7—N3—C23	-12.1 (3)
N2—C9—C8—C12	-3.1 (2)	C8—C7—N3—C23	165.47 (16)
C5—C9—C8—C12	177.28 (13)	C18—C17—C22—C21	0.9 (2)
N2—C9—C8—C7	174.06 (14)	C12—C17—C22—C21	-178.05 (15)
C5—C9—C8—C7	-5.5 (2)	C32—O1—C20—C19	-4.0 (3)
C9—N2—C10—C16	-176.83 (14)	C32—O1—C20—C21	175.4 (2)
C9—N2—C10—C11	3.3 (2)	N2-C10-C16-C15	179.56 (15)
C12-C11-C10-N2	-2.1 (2)	C11-C10-C16-C15	-0.5 (2)
C13-C11-C10-N2	177.95 (14)	O1-C20-C19-C18	-179.70 (17)
C12-C11-C10-C16	177.95 (14)	C21-C20-C19-C18	0.9 (3)
C13-C11-C10-C16	-2.0 (2)	C22-C17-C18-C19	-1.3 (3)
C9—C8—C12—C11	4.1 (2)	C12—C17—C18—C19	177.59 (16)
C7—C8—C12—C11	-172.70 (14)	C20-C19-C18-C17	0.4 (3)
C9—C8—C12—C17	-173.20 (14)	C10-C16-C15-C14	2.5 (3)
C7—C8—C12—C17	10.0 (2)	C13-C14-C15-C16	-1.9 (2)
C13—C11—C12—C8	178.23 (14)	C33—C14—C15—C16	177.88 (16)
C10—C11—C12—C8	-1.7 (2)	C7—N3—C23—C24	-160.3 (2)
C13—C11—C12—C17	-4.3 (2)	C7—N3—C23—C28	20.4 (3)
C10-C11-C12-C17	175.80 (13)	N1—C6—C1—C2	176.14 (18)
C18—C17—C12—C8	-107.91 (19)	C5—C6—C1—C2	-0.9 (3)
C22—C17—C12—C8	71.0 (2)	N1—C6—C1—C29	-2.4 (3)

74.7 (2)	C5—C6—C1—C29	-179.42 (18)
-106.41 (17)	C17—C22—C21—C20	0.5 (3)
-175.40 (15)	O1—C20—C21—C22	179.22 (16)
7.7 (2)	C19—C20—C21—C22	-1.4 (3)
7.2 (2)	C6—C5—C4—C3	-0.3 (3)
-169.75 (14)	C9—C5—C4—C3	-179.60 (19)
173.38 (15)	C24—C23—C28—C27	0.7 (3)
-4.1 (2)	N3—C23—C28—C27	-180.0 (2)
-1.9 (2)	C28—C23—C24—C25	-0.9 (3)
-178.88 (16)	N3—C23—C24—C25	179.7 (2)
-0.7 (2)	C27—C26—C25—C24	0.5 (4)
179.49 (14)	C30-C26-C25-C24	-179.3 (2)
-177.29 (15)	C23—C24—C25—C26	0.3 (4)
2.6 (2)	C25—C26—C27—C28	-0.7 (4)
-175.65 (17)	C30—C26—C27—C28	179.1 (2)
1.2 (3)	C23—C28—C27—C26	0.1 (4)
3.7 (2)	C6—C1—C2—C3	-0.4 (4)
-179.45 (15)	C29—C1—C2—C3	178.1 (2)
-179.17 (14)	C5—C4—C3—C2	-0.9 (4)
0.4 (2)	C1—C2—C3—C4	1.3 (4)
0.1 (2)		
	74.7 (2) $-106.41 (17)$ $-175.40 (15)$ $7.7 (2)$ $7.2 (2)$ $-169.75 (14)$ $173.38 (15)$ $-4.1 (2)$ $-1.9 (2)$ $-178.88 (16)$ $-0.7 (2)$ $179.49 (14)$ $-177.29 (15)$ $2.6 (2)$ $-175.65 (17)$ $1.2 (3)$ $3.7 (2)$ $-179.45 (15)$ $-179.17 (14)$ $0.4 (2)$ $0.1 (2)$	74.7 (2) $C5-C6-C1-C29$ $-106.41 (17)$ $C17-C22-C21-C20$ $-175.40 (15)$ $01-C20-C21-C22$ $7.7 (2)$ $C19-C20-C21-C22$ $7.2 (2)$ $C6-C5-C4-C3$ $-169.75 (14)$ $C9-C5-C4-C3$ $173.38 (15)$ $C24-C23-C28-C27$ $-4.1 (2)$ $N3-C23-C28-C27$ $-1.9 (2)$ $C28-C23-C24-C25$ $-178.88 (16)$ $N3-C23-C24-C25$ $-0.7 (2)$ $C27-C26-C25-C24$ $179.49 (14)$ $C30-C26-C25-C24$ $-177.29 (15)$ $C23-C24-C25-C26$ $2.6 (2)$ $C25-C26-C27-C28$ $-175.65 (17)$ $C30-C26-C27-C28$ $1.2 (3)$ $C23-C28-C27-C26$ $3.7 (2)$ $C6-C1-C2-C3$ $-179.45 (15)$ $C29-C1-C2-C3$ $-179.17 (14)$ $C5-C4-C3-C2$ $0.4 (2)$ $C1-C2-C3-C4$

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C17–C22 ring.				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N3—H3···Cg	0.86	2.48	3.336 (3)	176
C28—H28…N1	0.93	2.37	2.927 (3)	118
C18—H18…N2 ⁱ	0.93	2.55	3.435 (2)	159
Symmetry codes: (i) $-x+1$, $-y+1$, $-z$.				

Fig. 2

